Time Series
Time Series Analytics and Forecasting
John von Neumann Institute, Vietnam National University, Ho Chi Minh City
Teaching Assistant: Paul Bui Quang
Monday 29/05/2017 - Friday 09/06/2017
Total hours: 36
Timetable:
First week:
- Monday 29/05, h. 8.30-11.30 (class), h. 13.00-16.00 (lab)
- Tuesday 30/05, h. 8.30-11.30 (class+lab)
- Wednesday 31/05, h. 8.30-11.30 (class+lab)
- Thursday 01/06, h. 8.30-11.30 (class+lab)
- Friday 02/06, h. 8.30-11.30 (class+lab)
Second week:
- Monday 05/06, h. 8.30-11.30 (class), h. 13.00-16.00 (lab)
- Tuesday 06/06, h. 8.30-11.30 (class+lab)
- Wednesday 07/06, h. 8.30-11.30 (class+lab)
- Thursday 08/06, h. 8.30-11.30 (to be decided)
- Friday 09/06, h. 8.30-11.30 (student presentations)
Useful links:
- Central Statistics Office of Ireland (good source of time series data)
- A little book of R for time series, by Avril Choglan
- Meinhold and Singpurwalla (1983), "Understanding the Kalman filter" (pdf).
SYLLABUS (lecture by lecture):
29/05/17:
Class: Time series plots; Regression; Autoregressive models of order 1 AR(1).
Lab: Questions 1 and 2 of Lab 1.
30/05/17:
Class: Autoregressive models of higher order; Transformation of data; Time series decomposition.
Lab: Lab 2.
31/05/17:
Class: Exponential smoothing; Holt linear method; Comparing forecasting methods: RMSE and MAPE.
Lab: Lab 3.
01/06/17:
Class: Holt Winters methods: additive and multiplicative.
Lab: Lab 4.
02/06/17:
Class: Stationarity in mean; Autocorrelation and Partial Autocorrelation Function; Stationarity in Variance; Differencing.
Lab: Lab 5.
05/06/17
Class: Backshift operator; Moving average model (AM); Autoregressive moving average model (ARMA); Autoregressive integrated moving average model (ARIMA); ARIMA model for seasonal data; Qualitative criteria to choose an ARMA model; AIC method for model comparison.
Lab: Lab 6 (Chapter 2 of "Little book of R for time series").
06/06/17
Class: Kalman filter models; Updating scheme for KF.
Lab: Lab 7.
07/06/17
Class: Garch models; ARMA model with GARCH model for the errors.
Lab: Lab 8.